Efficient Calculation of Fisher Information Matrix: Monte Carlo Approach Using Prior Information

نویسنده

  • Sonjoy Das
چکیده

The Fisher information matrix (FIM) is a critical quantity in several aspects of mathematical modeling, including input selection and confidence region calculation. Analytical determination of the FIM in a general setting, specially in nonlinear models, may be difficult or almost impossible due to intractable modeling requirements and/or intractable high-dimensional integration. To circumvent these difficulties, a Monte Carlo (MC) simulation-based technique, resampling algorithm, based on the values of log-likelihood function or its exact stochastic gradient computed by using a set of pseudo data vectors, is usually recommended. The current work proposes an extension of the resampling algorithm in order to enhance the statistical qualities of the estimator of the FIM. This modified resampling algorithm is useful in those cases where the FIM has a structure with some elements being analytically known from prior information and the others being unknown. The estimator of the FIM, obtained by using the proposed algorithm, simultaneously preserves the analytically known elements and reduces variances of the estimators of the unknown elements by capitalizing on information contained in the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Computation of the Fisher Information Matrix in Nonstandard Settings

The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This article reviews some basic principles associate...

متن کامل

The Fisher Information Matrix: Performance Measure and Monte Carlo-Based Computation

The Fisher information matrix summarizes the amount of information in the data relative to the quantities of interest. There are many applications of the information matrix in modeling, systems analysis, and estimation, including confidence region calculation, input design, prediction bounds, and “noninformative” priors for Bayesian analysis. This paper reviews some basic principles associated ...

متن کامل

Inference about the Burr Type III Distribution under Type-II Hybrid Censored Data

This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...

متن کامل

A New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions

In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...

متن کامل

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007